Physiological role of S-formylglutathione hydrolase in C(1) metabolism of the methylotrophic yeast Candida boidinii.
نویسندگان
چکیده
The methylotrophic yeast Candida boidinii exhibits S-formylglutathione hydrolase activity (FGH, EC 3.1.2.12), which is involved in the glutathione-dependent formaldehyde oxidation pathway during growth on methanol as the sole carbon source. The structural gene, FGH1, was cloned from C. boidinii, and its predicted amino acid sequence showed more than 60 % similarity to those of FGHs from Paracoccus denitrificans and Saccharomyces cerevisiae, and human esterase D. FGH from C. boidinii contained a C-terminal tripeptide, SKL, which is a type I peroxisome-targeting signal, and a bimodal distribution of FGH between peroxisomes and the cytosol was demonstrated. The FGH1 gene was disrupted in the C. boidinii genome by one-step gene disruption. The fgh1Delta strain was still able to grow on methanol as a carbon source under methanol-limited chemostat conditions with low dilution rates (D<0.05 h(-1)), conditions under which a strain with disruption of the gene for formaldehyde dehydrogenase (another enzyme involved in the formaldehyde oxidation pathway) could not survive. These results suggested that FGH is not essential but necessary for optimal growth on methanol. This is believed to be the first report of detailed analyses of the FGH1 gene in a methylotrophic yeast strain.
منابع مشابه
Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5'-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation.
An integrative transformation system was established for an asporogenous methylotrophic yeast, Candida boidinii. This system uses a uracil auxotrophic mutant of C. boidinii as the host strain in combination with its URA3 gene as the selectable marker. First, the C. boidinii URA3 gene coding for orotidine-5'-phosphate decarboxylase (ODCase) was cloned by using complementation of the pyrF mutatio...
متن کاملA methylotrophic pathway participates in pectin utilization by Candida boidinii.
The methylotrophic yeast Candida boidinii S2 was found to be able to grow on pectin or polygalacturonate as a carbon source. When cells were grown on 1% (wt/vol) pectin, C. boidinii exhibited induced levels of the pectin-depolymerizing enzymes pectin methylesterase (208 mU/mg of protein), pectin lyase (673 mU/mg), pectate lyase (673 mU/mg), and polygalacturonase (3.45 U/mg) and two methanol-met...
متن کاملYeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy
Recently, microbe-plant interactions at the above-ground parts have attracted great attention. Here we describe nitrogen metabolism and regulation of autophagy in the methylotrophic yeast Candida boidinii, proliferating and surviving on the leaves of Arabidopsis thaliana. After quantitative analyses of yeast growth on the leaves of A. thaliana with the wild-type and several mutant yeast strains...
متن کاملMolecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.
We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycero...
متن کاملMsn5p is involved in formaldehyde resistance but not in oxidative stress response in the methylotrophic yeast Candida boidinii.
Methylotrophic yeasts, which can utilize methanol as sole carbon and energy source, are exposed to two toxic metabolic intermediates, formaldehyde and hydrogen peroxide, during growth on methanol. Here we report that Msn5p, an importin-β family nuclear exporter, participated in the formaldehyde resistance mechanism but not in the hydrogen peroxide resistance mechanism in Candida boidinii. Disru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 149 Pt 8 شماره
صفحات -
تاریخ انتشار 2003